Augmenting Zero-Shot Detection Training with Image Labels
Zero-shot detection (ZSD), i.e., detection on classes not seen during training, is essential for real world detection use-cases, but remains a difficult task. Recent research attempts ZSD with detection models that output embeddings instead of direct class labels. To this aim, the output of the detection model must be aligned to a learned embedding space such as CLIP. However, this alignment is hindered by detection data sets which are expensive to produce compared to image classification annotations, and the resulting lack of category diversity in the training data. We address this challenge by leveraging the CLIP embedding space in combination with image labels from ImageNet. Our results show that image labels are able to better align the detector output to the embedding space and thus have a high potential for ZSD. Compared to only training on detection data, we see a significant gain by adding image label data of 3.3 mAP for the 65/15 split on COCO on the unseen classes, i.e., we more than double the gain of related work.
READ FULL TEXT