Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms
The number of noisy images required for molecular reconstruction in single-particle cryo-electron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly-oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain new theoretical and computational contributions for this challenging non-linear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of idealized point masses are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the non-sparse case, where the third-order autocorrelation is required for uniformly-oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
READ FULL TEXT