Automated Artifact Detection in Ultra-widefield Fundus Photography of Patients with Sickle Cell Disease
Importance: Ultra-widefield fundus photography (UWF-FP) has shown utility in sickle cell retinopathy screening; however, image artifact may diminish quality and gradeability of images. Objective: To create an automated algorithm for UWF-FP artifact classification. Design: A neural network based automated artifact detection algorithm was designed to identify commonly encountered UWF-FP artifacts in a cross section of patient UWF-FP. A pre-trained ResNet-50 neural network was trained on a subset of the images and the classification accuracy, sensitivity, and specificity were quantified on the hold out test set. Setting: The study is based on patients from a tertiary care hospital site. Participants: There were 243 UWF-FP acquired from patients with sickle cell disease (SCD), and artifact labelling in the following categories was performed: Eyelash Present, Lower Eyelid Obstructing, Upper Eyelid Obstructing, Image Too Dark, Dark Artifact, and Image Not Centered. Results: Overall, the accuracy for each class was Eyelash Present at 83.7 at 83.7 Artifact at 93.9 This automated algorithm shows promise in identifying common imaging artifacts on a subset of Optos UWF-FP in SCD patients. Further refinement is ongoing with the goal of improving efficiency of tele-retinal screening in sickle cell retinopathy (SCR) by providing a photographer real-time feedback as to the types of artifacts present, and the need for image re-acquisition. This algorithm also may have potential future applicability in other retinal diseases by improving quality and efficiency of image acquisition of UWF-FP.
READ FULL TEXT