Automated curriculum generation for Policy Gradients from Demonstrations

12/01/2019
by   Anirudh Srinivasan, et al.
17

In this paper, we present a technique that improves the process of training an agent (using RL) for instruction following. We develop a training curriculum that uses a nominal number of expert demonstrations and trains the agent in a manner that draws parallels from one of the ways in which humans learn to perform complex tasks, i.e by starting from the goal and working backwards. We test our method on the BabyAI platform and show an improvement in sample efficiency for some of its tasks compared to a PPO (proximal policy optimization) baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset