Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition

by   Vincent Dorie, et al.

Statisticians have made great strides towards assumption-free estimation of causal estimands in the past few decades. However this explosion in research has resulted in a breadth of inferential strategies that both create opportunities for more reliable inference as well as complicate the choices that an applied researcher has to make and defend. Relatedly, researchers advocating for new methods typically compare their method to (at best) 2 or 3 other causal inference strategies and test using simulations that may or may not be designed to equally tease out flaws in all the competing methods. The causal inference data analysis challenge, "Is Your SATT Where It's At?", launched as part of the 2016 Atlantic Causal Inference Conference, sought to make progress with respect to both of these issues. The researchers creating the data testing grounds were distinct from the researchers submitting methods whose efficacy would be evaluated. Results from 30 competitors across the two versions of the competition (black box algorithms and do-it-yourself analyses) are presented along with post-hoc analyses that reveal information about the characteristics of causal inference strategies and settings that affect performance. The most consistent conclusion was that methods that flexibly model the response surface perform better overall than methods that fail to do so.


page 1

page 2

page 3

page 4


Challenges of Using Text Classifiers for Causal Inference

Causal understanding is essential for many kinds of decision-making, but...

User-Oriented Smart General AI System under Causal Inference

General AI system solves a wide range of tasks with high performance in ...

Atlantic Causal Inference Conference (ACIC) Data Analysis Challenge 2017

This brief note documents the data generating processes used in the 2017...

Online Causal Inference with Application to Near Real-Time Post-Market Vaccine Safety Surveillance

Streaming data routinely generated by mobile phones, social networks, e-...

Post-Model-Selection Statistical Inference with Interrupted Time Series Designs: An Evaluation of an Assault Weapons Ban in California

There have been many claims in the media and a bit of respectable resear...

An Automated Approach to Causal Inference in Discrete Settings

When causal quantities cannot be point identified, researchers often pur...

Estimating causal effects with optimization-based methods: A review and empirical comparison

In the absence of randomized controlled and natural experiments, it is n...

Please sign up or login with your details

Forgot password? Click here to reset