Automatic Detection Of Noise Events at Shooting Range Using Machine Learning

07/23/2021
by   Jon Nordby, et al.
0

Outdoor shooting ranges are subject to noise regulations from local and national authorities. Restrictions found in these regulations may include limits on times of activities, the overall number of noise events, as well as limits on number of events depending on the class of noise or activity. A noise monitoring system may be used to track overall sound levels, but rarely provide the ability to detect activity or count the number of events, required to compare directly with such regulations. This work investigates the feasibility and performance of an automatic detection system to count noise events. An empirical evaluation was done by collecting data at a newly constructed shooting range and training facility. The data includes tests of multiple weapon configurations from small firearms to high caliber rifles and explosives, at multiple source positions, and collected on multiple different days. Several alternative machine learning models are tested, using as inputs time-series of standard acoustic indicators such as A-weighted sound levels and 1/3 octave spectrogram, and classifiers such as Logistic Regression and Convolutional Neural Networks. Performance for the various alternatives are reported in terms of the False Positive Rate and False Negative Rate. The detection performance was found to be satisfactory for use in automatic logging of time-periods with training activity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro