B-CANF: Adaptive B-frame Coding with Conditional Augmented Normalizing Flows

09/05/2022
by   Mu-Jung Chen, et al.
0

This work introduces a B-frame coding framework, termed B-CANF, that exploits conditional augmented normalizing flows for B-frame coding. Learned B-frame coding is less explored and more challenging. Motivated by recent advances in conditional P-frame coding, B-CANF is the first attempt at applying flow-based models to both conditional motion and inter-frame coding. B-CANF features frame-type adaptive coding that learns better bit allocation for hierarchical B-frame coding. B-CANF also introduces a special type of B-frame, called B*-frame, to mimic P-frame coding. On commonly used datasets, B-CANF achieves the state-of-the-art compression performance, showing comparable BD-rate results (in terms of PSNR-RGB) to HM-16.23 under the random access configuration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro