B-GAP: Behavior-Guided Action Prediction for Autonomous Navigation

11/07/2020
by   Angelos Mavrogiannis, et al.
0

We present a novel learning algorithm for action prediction and local navigation for autonomous driving. Our approach classifies the driver behavior of other vehicles or road-agents (aggressive or conservative) and takes that into account for decision making and safe driving. We present a behavior-driven simulator that can generate trajectories corresponding to different levels of aggressive behaviors and use our simulator to train a policy using graph convolutional networks. We use a reinforcement learning-based navigation scheme that uses a proximity graph of traffic agents and computes a safe trajectory for the ego-vehicle that accounts for aggressive driver maneuvers such as overtaking, over-speeding, weaving, and sudden lane changes. We have integrated our algorithm with OpenAI gym-based "Highway-Env" simulator and demonstrate the benefits in terms of improved navigation in different scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro