Backdoor Detection in Reinforcement Learning

02/08/2022
by   Junfeng Guo, et al.
0

While the real world application of reinforcement learning (RL) is becoming popular, the safety concern and the robustness of an RL system require more attention. A recent work reveals that, in a multi-agent RL environment, backdoor trigger actions can be injected into a victim agent (a.k.a. trojan agent), which can result in a catastrophic failure as soon as it sees the backdoor trigger action. We propose the problem of RL Backdoor Detection, aiming to address this safety vulnerability. An interesting observation we drew from extensive empirical studies is a trigger smoothness property where normal actions similar to the backdoor trigger actions can also trigger low performance of the trojan agent. Inspired by this observation, we propose a reinforcement learning solution TrojanSeeker to find approximate trigger actions for the trojan agents, and further propose an efficient approach to mitigate the trojan agents based on machine unlearning. Experiments show that our approach can correctly distinguish and mitigate all the trojan agents across various types of agents and environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset