BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Neural Architecture Search (NAS) has seen an explosion of research in the past few years. A variety of methods have been proposed to perform NAS, including reinforcement learning, Bayesian optimization with a Gaussian process model, evolutionary search, and gradient descent. In this work, we design a NAS algorithm that performs Bayesian optimization using a neural network model. We develop a path-based encoding scheme to featurize the neural architectures that are used to train the neural network model. This strategy is particularly effective for encoding architectures in cell-based search spaces. After training on just 200 random neural architectures, we are able to predict the validation accuracy of a new architecture to within one percent of its true accuracy on average, for popular search spaces. This may be of independent interest beyond Bayesian neural architecture search. We test our algorithm on the NASBench (Ying et al. 2019) and DARTS (Liu et al. 2018) search spaces, and we show that our algorithm outperforms other NAS methods including evolutionary search, reinforcement learning, AlphaX, ASHA, and DARTS. Our algorithm is over 100x more efficient than random search, and 3.8x more efficient than the next-best algorithm on the NASBench dataset. As there have been problems with fair and reproducible experimental evauations in the field of NAS, we adhere to the recent NAS research checklist (Lindauer and Hutter 2019) to facilitate NAS research. In particular, our implementation has been made publicly available, including all details needed to fully reproduce our results.
READ FULL TEXT