Basins of attraction and critical curves for Newton-type methods in a phase equilibrium problem

05/30/2020
by   Gustavo Mendes Platt, et al.
0

Many engineering problems are described by systems of nonlinear equations, which may exhibit multiple solutions, in a challenging situation for root-finding algorithms. The existence of several solutions may give rise to complex basins of attraction for the solutions in the algorithms, with severe influence in their convergence behavior. In this work, we explore the relationship of the basins of attractions with the critical curves (the locus of the singular points of the Jacobian of the system of equations) in a phase equilibrium problem in the plane with two solutions, namely the calculation of a double azeotrope in a binary mixture. The results indicate that the conjoint use of the basins of attraction and critical curves can be a useful tool to select the most suitable algorithm for a specific problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset