BatMan: Mitigating Batch Effects via Stratification for Survival Outcome Prediction

by   Ai Ni, et al.

Reproducible translation of transcriptomics data has been hampered by the ubiquitous presence of batch effects. Statistical methods for managing batch effects were initially developed in the setting of sample group comparison and later borrowed for other settings such as survival outcome prediction. The most notable such method is ComBat, which adjusts for batches by including it as a covariate alongside sample groups in a linear regression. In survival prediction, however, ComBat is used without definable groups for survival outcome and is done sequentially with survival regression for a potentially confounded outcome. To address these issues, we propose a new method, called BatMan ("BATch MitigAtion via stratificatioN"). It adjusts batches as strata in survival regression and utilize variable selection methods such as LASSO to handle high dimensionality. We assess the performance of BatMan in comparison with ComBat, each used either alone or in conjunction with data normalization, in a re-sampling-based simulation study under various levels of predictive signal strength and patterns of batch-outcome association. Our simulations show that (1) BatMan outperforms ComBat in nearly all scenarios when there are batch effects in the data, and (2) their performance can be worsened by the addition of data normalization. We further evaluate them using microRNA data for ovarian cancer from the Cancer Genome Atlas, and find that BatMan outforms ComBat while the addition of data normalization worsens the prediction. Our study thus shows the advantage of BatMan and raises caution about the naive use of data normalization in the context of developing survival prediction models. The BatMan method and the simulation tool for performance assessment are implemented in R and publicly available at


page 1

page 2

page 3

page 4


Pathology-and-genomics Multimodal Transformer for Survival Outcome Prediction

Survival outcome assessment is challenging and inherently associated wit...

A Hierarchical Spike-and-Slab Model for Pan-Cancer Survival Using Pan-Omic Data

Pan-omics, pan-cancer analysis has advanced our understanding of the mol...

Analysis of survival data with non-proportional hazards: A comparison of propensity score weighted methods

One of the most common ways researchers compare survival outcomes across...

A general class of two-sample statistics for binary and time-to-event outcomes

We propose a class of two-sample statistics for testing the equality of ...

Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework

Background: Choosing the most performing method in terms of outcome pred...

Depth Normalization of Small RNA Sequencing: Using Data and Biology to Select a Suitable Method

Deep sequencing has become one of the most popular tools for transcripto...

Area-norm COBRA on Conditional Survival Prediction

The paper explores a different variation of combined regression strategy...

Please sign up or login with your details

Forgot password? Click here to reset