Bayesian Active Learning for Discrete Latent Variable Models

02/27/2022
by   Aditi Jha, et al.
11

Active learning seeks to reduce the number of samples required to estimate the parameters of a model, thus forming an important class of techniques in modern machine learning. However, past work on active learning has largely overlooked latent variable models, which play a vital role in neuroscience, psychology, and a variety of other engineering and scientific disciplines. Here we address this gap in the literature and propose a novel framework for maximum-mutual-information input selection for learning discrete latent variable regression models. We first examine a class of models known as "mixtures of linear regressions" (MLR). This example is striking because it is well known that active learning confers no advantage for standard least-squares regression. However, we show – both in simulations and analytically using Fisher information – that optimal input selection can nevertheless provide dramatic gains for mixtures of regression models; we also validate this on a real-world application of MLRs. We then consider a powerful class of temporally structured latent variable models known as Input-Output Hidden Markov Models (IO-HMMs), which have recently gained prominence in neuroscience. We show that our method substantially speeds up learning, and outperforms a variety of approximate methods based on variational and amortized inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro