Bayesian estimation of covariate assisted principal regression for brain functional connectivity

06/12/2023
by   Hyung G. Park, et al.
0

This paper presents a Bayesian reformulation of covariate-assisted principal (CAP) regression of Zhao et al. (2021), which aims to identify components in the covariance of response signal that are associated with covariates in a regression framework. We introduce a geometric formulation and reparameterization of individual covariance matrices in their tangent space. By mapping the covariance matrices to the tangent space, we leverage Euclidean geometry to perform posterior inference. This approach enables joint estimation of all parameters and uncertainty quantification within a unified framework, fusing dimension reduction for covariance matrices with regression model estimation. We validate the proposed method through simulation studies and apply it to analyze associations between covariates and brain functional connectivity, utilizing data from the Human Connectome Project.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro