Better Bounds for Online Line Chasing

11/22/2018
by   Marcin Bienkowski, et al.
0

We study online competitive algorithms for the line chasing problem in Euclidean spaces ^d, where the input consists of an initial point P_0 and a sequence of lines X_1,X_2,...,X_m, revealed one at a time. At each step t, when the line X_t is revealed, the algorithm must determine a point P_t∈ X_t. An online algorithm is called c-competitive if for any input sequence the path P_0, P_1,...,P_m it computes has length at most c times the optimum path. The line chasing problem is a variant of a more general convex body chasing problem, where the sets X_t are arbitrary convex sets. To date, the best competitive ratio for the line chasing problem was 28.1, even in the plane. We significantly improve this bound, by providing a 3-competitive algorithm for any dimension d. We also improve the lower bound on the competitive ratio, from 1.412 to 1.5358.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset