Bisect and Conquer: Hierarchical Clustering via Max-Uncut Bisection

12/15/2019
by   Sara Ahmadian, et al.
0

Hierarchical Clustering is an unsupervised data analysis method which has been widely used for decades. Despite its popularity, it had an underdeveloped analytical foundation and to address this, Dasgupta recently introduced an optimization viewpoint of hierarchical clustering with pairwise similarity information that spurred a line of work shedding light on old algorithms (e.g., Average-Linkage), but also designing new algorithms. Here, for the maximization dual of Dasgupta's objective (introduced by Moseley-Wang), we present polynomial-time .4246 approximation algorithms that use Max-Uncut Bisection as a subroutine. The previous best worst-case approximation factor in polynomial time was .336, improving only slightly over Average-Linkage which achieves 1/3. Finally, we complement our positive results by providing APX-hardness (even for 0-1 similarities), under the Small Set Expansion hypothesis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset