Bitemporal Property Graphs to Organize Evolving Systems

11/26/2021
by   Christopher Rost, et al.
0

This work is a summarized view on the results of a one-year cooperation between Oracle Corp. and the University of Leipzig. The goal was to research the organization of relationships within multi-dimensional time-series data, such as sensor data from the IoT area. We showed in this project that temporal property graphs with some extensions are a prime candidate for this organizational task that combines the strengths of both data models (graph and time-series). The outcome of the cooperation includes four achievements: (1) a bitemporal property graph model, (2) a temporal graph query language, (3) a conception of continuous event detection, and (4) a prototype of a bitemporal graph database that supports the model, language and event detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro