Blue River Controls: A toolkit for Reinforcement Learning Control Systems on Hardware

by   Kirill Polzounov, et al.

We provide a simple hardware wrapper around the Quanser's hardware-in-the-loop software development kit (HIL SDK) to allow for easy development of new Quanser hardware. To connect to the hardware we use a module written in Cython. The internal QuanserWrapper class handles most of the difficult aspects of interacting with hardware, including the timing (using a hardware timer), and ensuring the data sent to hardware is safe and correct, where safety corresponds to safe operating voltage and current for the specified hardware. Much of the recent success of Reinforcement learning (RL) has been made possible with training and testing tools like OpenAI Gym and Deepmind Control Suite. Unfortunately, tools for quickly testing and transferring high-frequency RL algorithms from simulation to real hardware environment remain mostly absent. We present Blue River Controls, a tool that allows to train and test reinforcement learning algorithms on real-world hardware. It features a simple interface based on OpenAI Gym, that works directly on both simulation and hardware. We use Quanser's Qube Servo2-USB platform, an underactuated rotary pendulum as an initial testing device. We also provide tools to simplify training RL algorithms on other hardware. Several baselines, from both classical controllers and pretrained RL agents are included to compare performance across tasks. Blue River Controls is available at this https URL:


Modeling Communication Networks in a Real-Time Simulation Environment for Evaluating Controls of Shipboard Power Systems

Interest by the U.S. Navy in the development and deployment of advanced ...

A Reinforcement Learning-based Volt-VAR Control Dataset and Testing Environment

To facilitate the development of reinforcement learning (RL) based power...

Lyapunov Barrier Policy Optimization

Deploying Reinforcement Learning (RL) agents in the real-world require t...

safe-control-gym: a Unified Benchmark Suite for Safe Learning-based Control and Reinforcement Learning

In recent years, reinforcement learning and learning-based control – as ...

ns3-gym: Extending OpenAI Gym for Networking Research

OpenAI Gym is a toolkit for reinforcement learning (RL) research. It inc...

DRIFT: Deep Reinforcement Learning for Functional Software Testing

Efficient software testing is essential for productive software developm...

Please sign up or login with your details

Forgot password? Click here to reset