Boosting 3D Point Cloud Registration by Transferring Multi-modality Knowledge

02/10/2023
by   Mingzhi Yuan, et al.
0

The recent multi-modality models have achieved great performance in many vision tasks because the extracted features contain the multi-modality knowledge. However, most of the current registration descriptors have only concentrated on local geometric structures. This paper proposes a method to boost point cloud registration accuracy by transferring the multi-modality knowledge of pre-trained multi-modality model to a new descriptor neural network. Different to the previous multi-modality methods that requires both modalities, the proposed method only requires point clouds during inference. Specifically, we propose an ensemble descriptor neural network combining pre-trained sparse convolution branch and a new point-based convolution branch. By fine-tuning on a single modality data, the proposed method achieves new state-of-the-art results on 3DMatch and competitive accuracy on 3DLoMatch and KITTI.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro