Bootstrapping Concept Formation in Small Neural Networks

10/26/2021
by   Minija Tamosiunaite, et al.
0

The question how neural systems (of humans) can perform reasoning is still far from being solved. We posit that the process of forming Concepts is a fundamental step required for this. We argue that, first, Concepts are formed as closed representations, which are then consolidated by relating them to each other. Here we present a model system (agent) with a small neural network that uses realistic learning rules and receives only feedback from the environment in which the agent performs virtual actions. First, the actions of the agent are reflexive. In the process of learning, statistical regularities in the input lead to the formation of neuronal pools representing relations between the entities observed by the agent from its artificial world. This information then influences the behavior of the agent via feedback connections replacing the initial reflex by an action driven by these relational representations. We hypothesize that the neuronal pools representing relational information can be considered as primordial Concepts, which may in a similar way be present in some pre-linguistic animals, too. We argue that systems such as this can help formalizing the discussion about what constitutes Concepts and serve as a starting point for constructing artificial cogitating systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset