Brain tumor multi classification and segmentation in MRI images using deep learning

04/20/2023
by   Belal Amin, et al.
13

This study proposes a deep learning model for the classification and segmentation of brain tumors from magnetic resonance imaging (MRI) scans. The classification model is based on the EfficientNetB1 architecture and is trained to classify images into four classes: meningioma, glioma, pituitary adenoma, and no tumor. The segmentation model is based on the U-Net architecture and is trained to accurately segment the tumor from the MRI images. The models are evaluated on a publicly available dataset and achieve high accuracy and segmentation metrics, indicating their potential for clinical use in the diagnosis and treatment of brain tumors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset