Bridging Control-Centric and Data-Centric Optimization

06/01/2023
by   Tal Ben-Nun, et al.
0

With the rise of specialized hardware and new programming languages, code optimization has shifted its focus towards promoting data locality. Most production-grade compilers adopt a control-centric mindset - instruction-driven optimization augmented with scalar-based dataflow - whereas other approaches provide domain-specific and general purpose data movement minimization, which can miss important control-flow optimizations. As the two representations are not commutable, users must choose one over the other. In this paper, we explore how both control- and data-centric approaches can work in tandem via the Multi-Level Intermediate Representation (MLIR) framework. Through a combination of an MLIR dialect and specialized passes, we recover parametric, symbolic dataflow that can be optimized within the DaCe framework. We combine the two views into a single pipeline, called DCIR, showing that it is strictly more powerful than either view. On several benchmarks and a real-world application in C, we show that our proposed pipeline consistently outperforms MLIR and automatically uncovers new optimization opportunities with no additional effort.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset