Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures

08/27/2018
by   Yaowu Liu, et al.
0

Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics, dating back to the classic Fisher's combination test. In modern large-scale data analysis, correlation and sparsity are common features and efficient computation is a necessary requirement for dealing with massive data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution. Our test statistic has a very simple form and is defined as a weighted sum of Cauchy transformation of individual p-values. We prove a non-asymptotic result that the tail of the null distribution of our proposed test statistic can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy with respect to p-value calculations, especially for very small p-values. The proposed test has also been applied to a genome-wide association study of Crohn's disease and compared with several existing tests.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro