Causal Inference from Possibly Unbalanced Split-Plot Designs: A Randomization-based Perspective

06/20/2019
by   Rahul Mukerjee, et al.
0

Split-plot designs find wide applicability in multifactor experiments with randomization restrictions. Practical considerations often warrant the use of unbalanced designs. This paper investigates randomization based causal inference in split-plot designs that are possibly unbalanced. Extension of ideas from the recently studied balanced case yields an expression for the sampling variance of a treatment contrast estimator as well as a conservative estimator of the sampling variance. However, the bias of this variance estimator does not vanish even when the treatment effects are strictly additive. A careful and involved matrix analysis is employed to overcome this difficulty, resulting in a new variance estimator, which becomes unbiased under milder conditions. A construction procedure that generates such an estimator with minimax bias is proposed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro