Causal Interfaces

04/18/2014
by   David A. Eubanks, et al.
0

The interaction of two binary variables, assumed to be empirical observations, has three degrees of freedom when expressed as a matrix of frequencies. Usually, the size of causal influence of one variable on the other is calculated as a single value, as increase in recovery rate for a medical treatment, for example. We examine what is lost in this simplification, and propose using two interface constants to represent positive and negative implications separately. Given certain assumptions about non-causal outcomes, the set of resulting epistemologies is a continuum. We derive a variety of particular measures and contrast them with the one-dimensional index.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro