Cell Complex Neural Networks

10/02/2020
by   Mustafa Hajij, et al.
0

Cell complexes are topological spaces constructed from simple blocks called cells. They generalize graphs, simplicial complexes, and polyhedral complexes that form important domains for practical applications. They also provide a combinatorial formalism that allows the inclusion of complicated relationships of restrictive structures such as graphs and meshes. In this paper, we propose Cell Complexes Neural Networks (CXNs), a general, combinatorial and unifying construction for performing neural network-type computations on cell complexes. We introduce an inter-cellular message passing scheme on cell complexes that takes the topology of the underlying space into account and generalizes message passing scheme to graphs. Finally, we introduce a unified cell complex encoder-decoder framework that enables learning representation of cells for a given complex inside the Euclidean spaces. In particular, we show how our cell complex autoencoder construction can give, in the special case cell2vec, a generalization for node2vec.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset