Chinese-Japanese Unsupervised Neural Machine Translation Using Sub-character Level Information

03/01/2019
by   Longtu Zhang, et al.
0

Unsupervised neural machine translation (UNMT) requires only monolingual data of similar language pairs during training and can produce bi-directional translation models with relatively good performance on alphabetic languages (Lample et al., 2018). However, no research has been done to logographic language pairs. This study focuses on Chinese-Japanese UNMT trained by data containing sub-character (ideograph or stroke) level information which is decomposed from character level data. BLEU scores of both character and sub-character level systems were compared against each other and the results showed that despite the effectiveness of UNMT on character level data, sub-character level data could further enhance the performance, in which the stroke level system outperformed the ideograph level system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset