Cinematic-L1 Video Stabilization with a Log-Homography Model

11/16/2020
by   Arwen Bradley, et al.
0

We present a method for stabilizing handheld video that simulates the camera motions cinematographers achieve with equipment like tripods, dollies, and Steadicams. We formulate a constrained convex optimization problem minimizing the ℓ_1-norm of the first three derivatives of the stabilized motion. Our approach extends the work of Grundmann et al. [9] by solving with full homographies (rather than affinities) in order to correct perspective, preserving linearity by working in log-homography space. We also construct crop constraints that preserve field-of-view; model the problem as a quadratic (rather than linear) program to allow for an ℓ_2 term encouraging fidelity to the original trajectory; and add constraints and objectives to reduce distortion. Furthermore, we propose new methods for handling salient objects via both inclusion constraints and centering objectives. Finally, we describe a windowing strategy to approximate the solution in linear time and bounded memory. Our method is computationally efficient, running at 300fps on an iPhone XS, and yields high-quality results, as we demonstrate with a collection of stabilized videos, quantitative and qualitative comparisons to [9] and other methods, and an ablation study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro