Class adaptive threshold and negative class guided noisy annotation robust Facial Expression Recognition
The hindering problem in facial expression recognition (FER) is the presence of inaccurate annotations referred to as noisy annotations in the datasets. These noisy annotations are present in the datasets inherently because the labeling is subjective to the annotator, clarity of the image, etc. Recent works use sample selection methods to solve this noisy annotation problem in FER. In our work, we use a dynamic adaptive threshold to separate confident samples from non-confident ones so that our learning won't be hampered due to non-confident samples. Instead of discarding the non-confident samples, we impose consistency in the negative classes of those non-confident samples to guide the model to learn better in the positive class. Since FER datasets usually come with 7 or 8 classes, we can correctly guess a negative class by 85 doesn't belong to", the model can learn "which class it belongs to" in a better manner. We demonstrate proposed framework's effectiveness using quantitative as well as qualitative results. Our method performs better than the baseline by a margin of 4 synthetic noisy labels in the aforementioned datasets.
READ FULL TEXT