Classification of Hyperspectral and LiDAR Data Using Coupled CNNs

02/04/2020
by   Renlong Hang, et al.
15

In this paper, we propose an efficient and effective framework to fuse hyperspectral and Light Detection And Ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral-spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy of 96.03 achieves an overall accuracy of 99.12 effectiveness of our proposed model.

READ FULL TEXT
research
05/25/2020

Hyperspectral Image Classification with Attention Aided CNNs

Convolutional neural networks (CNNs) have been widely used for hyperspec...
research
04/06/2021

Hyperspectral and LiDAR data classification based on linear self-attention

An efficient linear self-attention fusion model is proposed in this pape...
research
08/26/2019

A Convolutional Neural Network with Mapping Layers for Hyperspectral Image Classification

In this paper, we propose a convolutional neural network with mapping la...
research
11/19/2021

A 3D 2D convolutional Neural Network Model for Hyperspectral Image Classification

In the proposed SEHybridSN model, a dense block was used to reuse shallo...
research
07/03/2018

Generalized Bilinear Deep Convolutional Neural Networks for Multimodal Biometric Identification

In this paper, we propose to employ a bank of modality-dedicated Convolu...
research
07/09/2017

Integration of LiDAR and Hyperspectral Data for Land-cover Classification: A Case Study

In this paper, an approach is proposed to fuse LiDAR and hyperspectral d...
research
01/20/2017

Fusion of Heterogeneous Data in Convolutional Networks for Urban Semantic Labeling (Invited Paper)

In this work, we present a novel module to perform fusion of heterogeneo...

Please sign up or login with your details

Forgot password? Click here to reset