Clinical Concept Extraction with Contextual Word Embedding

10/24/2018
by   Henghui Zhu, et al.
0

Automatic extraction of clinical concepts is an essential step for turning the unstructured data within a clinical note into structured and actionable information. In this work, we propose a clinical concept extraction model for automatic annotation of clinical problems, treatments, and tests in clinical notes utilizing domain-specific contextual word embedding. A contextual word embedding model is first trained on a corpus with a mixture of clinical reports and relevant Wikipedia pages in the clinical domain. Next, a bidirectional LSTM-CRF model is trained for clinical concept extraction using the contextual word embedding model. We tested our proposed model on the I2B2 2010 challenge dataset. Our proposed model achieved the best performance among reported baseline models and outperformed the state-of-the-art models by 3.4 of F1-score.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset