Co-Occurrence Matters: Learning Action Relation for Temporal Action Localization

03/15/2023
by   Congqi Cao, et al.
0

Temporal action localization (TAL) is a prevailing task due to its great application potential. Existing works in this field mainly suffer from two weaknesses: (1) They often neglect the multi-label case and only focus on temporal modeling. (2) They ignore the semantic information in class labels and only use the visual information. To solve these problems, we propose a novel Co-Occurrence Relation Module (CORM) that explicitly models the co-occurrence relationship between actions. Besides the visual information, it further utilizes the semantic embeddings of class labels to model the co-occurrence relationship. The CORM works in a plug-and-play manner and can be easily incorporated with the existing sequence models. By considering both visual and semantic co-occurrence, our method achieves high multi-label relationship modeling capacity. Meanwhile, existing datasets in TAL always focus on low-semantic atomic actions. Thus we construct a challenging multi-label dataset UCF-Crime-TAL that focuses on high-semantic actions by annotating the UCF-Crime dataset at frame level and considering the semantic overlap of different events. Extensive experiments on two commonly used TAL datasets, i.e., MultiTHUMOS and TSU, and our newly proposed UCF-Crime-TAL demenstrate the effectiveness of the proposed CORM, which achieves state-of-the-art performance on these datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro