Coalescing Global and Local Information for Procedural Text Understanding

08/26/2022
by   Kaixin Ma, et al.
0

Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. A complete procedural understanding solution should combine three core aspects: local and global views of the inputs, and global view of outputs. Prior methods considered a subset of these aspects, resulting in either low precision or low recall. In this paper, we propose Coalescing Global and Local Information (CGLI), a new model that builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. We extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results; experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro