Collaborative Bimanual Manipulation Using Optimal Motion Adaptation and Interaction Control

by   Ruoshi Wen, et al.

This work developed collaborative bimanual manipulation for reliable and safe human-robot collaboration, which allows remote and local human operators to work interactively for bimanual tasks. We proposed an optimal motion adaptation to retarget arbitrary commands from multiple human operators into feasible control references. The collaborative manipulation framework has three main modules: (1) contact force modulation for compliant physical interactions with objects via admittance control; (2) task-space sequential equilibrium and inverse kinematics optimization, which adapts interactive commands from multiple operators to feasible motions by satisfying the task constraints and physical limits of the robots; and (3) an interaction controller adopted from the fractal impedance control, which is robust to time delay and stable to superimpose multiple control efforts for generating desired joint torques and controlling the dual-arm robots. Extensive experiments demonstrated the capability of the collaborative bimanual framework, including (1) dual-arm teleoperation that adapts arbitrary infeasible commands that violate joint torque limits into continuous operations within safe boundaries, compared to failures without the proposed optimization; (2) robust maneuver of a stack of objects via physical interactions in presence of model inaccuracy; (3) collaborative multi-operator part assembly, and teleoperated industrial connector insertion, which validate the guaranteed stability of reliable human-robot co-manipulation.


page 1

page 3

page 4

page 6

page 7

page 8


Whole-Body Control of a Mobile Manipulator for Passive Collaborative Transportation

Human-robot collaborative tasks foresee interactions between humans and ...

A Task Allocation Approach for Human-Robot Collaboration in Product Defects Inspection Scenarios

The presence and coexistence of human operators and collaborative robots...

Feasibility Retargeting for Multi-contact Teleoperation and Physical Interaction

This short paper outlines two recent works on multi-contact teleoperatio...

Fine Manipulation and Dynamic Interaction in Haptic Teleoperation

Teleoperation of robots enables remote intervention in distant and dange...

Robust and Dexterous Dual-arm Tele-Cooperation using Fractal Impedance Control

Deploying robots from isolated operations to shared environments has bee...

Formulating Intuitive Stack-of-Tasks with Visuo-Tactile Perception for Collaborative Human-Robot Fine Manipulation

Enabling robots to work in close proximity with humans necessitates to e...

Model Predictive Impedance Control with Gaussian Processes for Human and Environment Interaction

In tasks where the goal or configuration varies between iterations, huma...

Please sign up or login with your details

Forgot password? Click here to reset