Combining Data-driven Supervision with Human-in-the-loop Feedback for Entity Resolution
The distribution gap between training datasets and data encountered in production is well acknowledged. Training datasets are often constructed over a fixed period of time and by carefully curating the data to be labeled. Thus, training datasets may not contain all possible variations of data that could be encountered in real-world production environments. Tasked with building an entity resolution system - a model that identifies and consolidates data points that represent the same person - our first model exhibited a clear training-production performance gap. In this case study, we discuss our human-in-the-loop enabled, data-centric solution to closing the training-production performance divergence. We conclude with takeaways that apply to data-centric learning at large.
READ FULL TEXT