Comonadic semantics for hybrid logic and bounded fragments
In recent work, comonads and associated structures have been used to analyse a range of important notions in finite model theory, descriptive complexity and combinatorics. We extend this analysis to Hybrid logic, a widely-studied extension of basic modal logic, which corresponds to the bounded fragment of first-order logic. In addition to characterising the various resource-indexed equivalences induced by Hybrid logic and the bounded fragment, and the associated combinatorial decompositions of structures, we also give model-theoretic characterisations of bounded formulas in terms of invariance under generated substructures, in both the finite and infinite cases.
READ FULL TEXT