Comparing the Utility and Disclosure Risk of Synthetic Data with Samples of Microdata

07/02/2022
by   Claire Little, et al.
0

Most statistical agencies release randomly selected samples of Census microdata, usually with sample fractions under 10 statistical disclosure control (SDC) applied. An alternative to SDC is data synthesis, which has been attracting growing interest, yet there is no clear consensus on how to measure the associated utility and disclosure risk of the data. The ability to produce synthetic Census microdata, where the utility and associated risks are clearly understood, could mean that more timely and wider-ranging access to microdata would be possible. This paper follows on from previous work by the authors which mapped synthetic Census data on a risk-utility (R-U) map. The paper presents a framework to measure the utility and disclosure risk of synthetic data by comparing it to samples of the original data of varying sample fractions, thereby identifying the sample fraction which has equivalent utility and risk to the synthetic data. Three commonly used data synthesis packages are compared with some interesting results. Further work is needed in several directions but the methodology looks very promising.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset