Compositional Sequence Labeling Models for Error Detection in Learner Writing

07/20/2016
by   Marek Rei, et al.
0

In this paper, we present the first experiments using neural network models for the task of error detection in learner writing. We perform a systematic comparison of alternative compositional architectures and propose a framework for error detection based on bidirectional LSTMs. Experiments on the CoNLL-14 shared task dataset show the model is able to outperform other participants on detecting errors in learner writing. Finally, the model is integrated with a publicly deployed self-assessment system, leading to performance comparable to human annotators.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro