Compressed Sensing Channel Estimation for OTFS Modulation in Non-Integer Delay-Doppler Domain

11/24/2021
by   Felipe Gómez-Cuba, et al.
0

This paper introduces a Compressed Sensing (CS) estimation scheme for Orthogonal Time Frequency Space (OTFS) channels with sparse multipath. The OTFS waveform represents signals in a two dimensional Delay-Doppler (DD) orthonormal basis. The proposed model does not require the assumption that the delays are integer multiples of the sampling period. The analysis shows that non-integer delay and Doppler shifts in the channel cannot be accurately modelled by integer approximations. An Orthogonal Matching Pursuit with Binary-division Refinement (OMPBR) estimation algorithm is proposed. The proposed estimator finds the best channel approximation over a continuous DD dictionary without integer approximations. This results in a significant reduction of the estimation normalized mean squared error with reasonable computational complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro