Computing complete hyperbolic structures on cusped 3-manifolds

12/13/2021
by   Clément Maria, et al.
0

A fundamental way to study 3-manifolds is through the geometric lens, one of the most prominent geometries being the hyperbolic one. We focus on the computation of a complete hyperbolic structure on a connected orientable hyperbolic 3-manifold with torus boundaries. This family of 3-manifolds includes the knot complements. This computation of a hyperbolic structure requires the resolution of gluing equations on a triangulation of the space, but not all triangulations admit a solution to the equations. In this paper, we propose a new method to find a triangulation that admits a solution to the gluing equations, using convex optimization and combinatorial modifications. It is based on Casson and Rivin s reformulation of the equations. We provide a novel approach to modify a triangulation and update its geometry, along with experimental results to support the new method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset