Computing solutions of linear Mahler equations

12/16/2016
by   Frédéric Chyzak, et al.
0

Mahler equations relate evaluations of the same function f at iterated bth powers of the variable. They arise in particular in the study of automatic sequences and in the complexity analysis of divide-and-conquer algorithms. Recently, the problem of solving Mahler equations in closed form has occurred in connection with number-theoretic questions. A difficulty in the manipulation of Mahler equations is the exponential blow-up of degrees when applying a Mahler operator to a polynomial. In this work, we present algorithms for solving linear Mahler equations for series, polynomials, and rational functions, and get polynomial-time complexity under a mild assumption. Incidentally, we develop an algorithm for computing the gcrd of a family of linear Mahler operators with nonzero constant terms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset