Consistency of Maximum Likelihood for Continuous-Space Network Models
Network analysis needs tools to infer distributions over graphs of arbitrary size from a single graph. Assuming the distribution is generated by a continuous latent space model which obeys certain natural symmetry and smoothness properties, we establish three levels of consistency for non-parametric maximum likelihood inference as the number of nodes grows: (i) the estimated locations of all nodes converge in probability on their true locations; (ii) the distribution over locations in the latent space converges on the true distribution; and (iii) the distribution over graphs of arbitrary size converges.
READ FULL TEXT