Constrained Resource Allocation Problems in Communications: An Information-assisted Approach
We consider a class of resource allocation problems given a set of unconditional constraints whose objective function satisfies Bellman's optimality principle. Such problems are ubiquitous in wireless communication, signal processing, and networking. These constrained combinatorial optimization problems are, in general, NP-Hard. This paper proposes two algorithms to solve this class of problems using a dynamic programming framework assisted by an information-theoretic measure. We demonstrate that the proposed algorithms ensure optimal solutions under carefully chosen conditions and use significantly reduced computational resources. We substantiate our claims by solving the power-constrained bit allocation problem in 5G massive Multiple-Input Multiple-Output receivers using the proposed approach.
READ FULL TEXT