Context-Tuning: Learning Contextualized Prompts for Natural Language Generation
Recently, pretrained language models (PLMs) have made exceptional success in language generation. To leverage the rich knowledge encoded by PLMs, a simple yet powerful mechanism is to use prompts, in the form of either discrete tokens or continuous embeddings. In existing studies, manual prompts are time-consuming and require domain expertise, while continuous prompts are typically independent of the inputs. To address this issue, we propose a novel continuous prompting approach, called Context-Tuning, to fine-tuning PLMs for natural language generation. Firstly, the prompts are derived based on the input text, so that they can elicit useful knowledge from PLMs for generation. We refer to such prompts as contextualized prompts. Secondly, to further enhance the relevance of the generated text to the inputs, we utilize continuous inverse prompting to refine the process of natural language generation by modeling an inverse generation process from output to input. Moreover, we propose a lightweight contexttuning, fine-tuning only 0.4 parameters while retaining well performance.
READ FULL TEXT