Continuous-time stochastic gradient descent for optimizing over the stationary distribution of stochastic differential equations

02/14/2022
by   Ziheng Wang, et al.
0

We develop a new continuous-time stochastic gradient descent method for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm continuously updates the SDE model's parameters using an estimate for the gradient of the stationary distribution. The gradient estimate is simultaneously updated, asymptotically converging to the direction of steepest descent. We rigorously prove convergence of our online algorithm for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the direction of steepest descent. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds for the solutions of a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset