Continuous-Time Trajectory Optimization for Decentralized Multi-Robot Navigation

09/05/2019
by   Shravan Krishnan, et al.
0

Multi-robot systems have begun to permeate into a variety of different fields, but collision-free navigation in a decentralized manner is still an arduous task. Typically, the navigation of high speed multi-robot systems demands replanning of trajectories to avoid collisions with one another. This paper presents an online replanning algorithm for trajectory optimization in labeled multi-robot scenarios. With reliable communication of states among robots, each robot predicts a smooth continuous-time trajectory for every other remaining robots. Based on the knowledge of these predicted trajectories, each robot then plans a collision-free trajectory for itself. The collision-free trajectory optimization problem is cast as a non linear program (NLP) by exploiting polynomial based trajectory generation. The algorithm was tested in simulations on Gazebo with aerial robots.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset