Convex Functions in ACL2(r)

10/10/2018
by   Carl Kwan, et al.
0

This paper builds upon our prior formalisation of R^n in ACL2(r) by presenting a set of theorems for reasoning about convex functions. This is a demonstration of the higher-dimensional analytical reasoning possible in our metric space formalisation of R^n. Among the introduced theorems is a set of equivalent conditions for convex functions with Lipschitz continuous gradients from Yurii Nesterov's classic text on convex optimisation. To the best of our knowledge a full proof of the theorem has yet to be published in a single piece of literature. We also explore "proof engineering" issues, such as how to state Nesterov's theorem in a manner that is both clear and useful.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro