Convolution-Free Waveform Transformers for Multi-Lead ECG Classification

09/29/2021
by   Annamalai Natarajan, et al.
0

We present our entry to the 2021 PhysioNet/CinC challenge - a waveform transformer model to detect cardiac abnormalities from ECG recordings. We compare the performance of the waveform transformer model on different ECG-lead subsets using approximately 88,000 ECG recordings from six datasets. In the official rankings, team prna ranked between 9 and 15 on 12, 6, 4, 3 and 2-lead sets respectively. Our waveform transformer model achieved an average challenge metric of 0.47 on the held-out test set across all ECG-lead subsets. Our combined performance across all leads placed us at rank 11 out of 39 officially ranking teams.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset