Convolutional Bipartite Attractor Networks
In human perception and cognition, the fundamental operation that brains perform is interpretation: constructing coherent neural states from noisy, incomplete, and intrinsically ambiguous evidence. The problem of interpretation is well matched to an early and often overlooked architecture, the attractor network---a recurrent neural network that performs constraint satisfaction, imputation of missing features, and clean up of noisy data via energy minimization dynamics. We revisit attractor nets in light of modern deep learning methods, and propose a convolutional bipartite architecture with a novel training loss, activation function, and connectivity constraints. We tackle problems much larger than have been previously explored with attractor nets and demonstrate their potential for image denoising, completion, and super-resolution. We argue that this architecture is better motivated than ever-deeper feedforward models and is a viable alternative to more costly sampling-based methods on a range of supervised and unsupervised tasks.
READ FULL TEXT