Convolutional Neural Network-based Topology Optimization (CNN-TO) By Estimating Sensitivity of Compliance from Material Distribution

12/23/2019
by   Yusuke Takahashi, et al.
0

This paper proposes a new topology optimization method that applies a convolutional neural network (CNN), which is one deep learning technique for topology optimization problems. Using this method, we acquire a structure with a little higher performance that could not be obtained by the previous topology optimization method. In particular, in this paper, we solve a topology optimization problem aimed at maximizing stiffness with a mass constraint, which is a common type of topology optimization. In this paper, we first formulate the conventional topology optimization by the solid isotropic material with penalization method. Next, we formulate the topology optimization using CNN. Finally, we show the effectiveness of the proposed topology optimization method by solving a verification example, namely a topology optimization problem aimed at maximizing stiffness. In this research, as a result of solving the verification example for a small design area of 16x32 element, we obtain the solution different from the previous topology optimization method. This result suggests that stiffness information of structure can be extracted and analyzed for structural design by analyzing the density distribution using CNN like an image. This suggests that CNN technology can be utilized in the structural design and topology optimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset